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Undersampled Sparse Phase Retrieval via
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Abstract—In the undersampled phase retrieval problem, the
goal is to recover an N -dimensional complex-valued signal from
only M < N intensity measurements without phase information.
This inverse system is not only nonconvex, but also underdeter-
mined. In this paper, we propose to exploit the sparsity in the orig-
inal signal and develop two low-complexity algorithms with supe-
rior performance based on the majorization–minimization frame-
work. The proposed algorithms are preferred to existing bench-
mark methods, since at each iteration a simple convex surrogate
problem is solved with a closed-form solution that monotonically
decreases the objective function value. When the unknown signal
is sparse in the standard basis, the first algorithm C-PRIME can
produce a stationary point of the corresponding nonconvex phase
retrieval problem. When the unknown signal is not sparse in the
standard basis, the second algorithm SC-PRIME can find a coor-
dinatewise stationary point of the more challenging phase retrieval
problem through sparse coding. Experimental results validate that
the proposed algorithms have higher successful recovery rate and
less normalized mean square error than existing up-to-date meth-
ods under the same setting.

Index Terms—Phase retrieval, sparse coding, dictionary learn-
ing, majorization-minimization.

I. INTRODUCTION

PHASE retrieval aims at recovering a complex-valued sig-
nal x ∈ CN from the magnitude squared of M linear mea-

surements (usually corrupted with additive noise {ni}Mi=1):

yi =
∣
∣aH

i x
∣
∣
2

+ ni ∈ R, i = 1, . . . , M. (1)

This problem is motivated by the fact that most of the optical
devices can easily measure the intensity, rather than the phase,
of the incoming light. Hence, it is a challenging task to recover
the original signal from only intensity measurements. The mea-
surement vectors {ai ∈ CN }Mi=1 are known. For example, they
correspond to rows of the Discrete Fourier Transform (DFT)
matrix in various imaging applications; to name a few, optical
imaging [1], astronomy [2], crystallography [3], and microscopy
[4]. Other non-imaging applications include audio signal
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processing [5], etc. A comprehensive overview on the theory
and applications of phase retrieval is discussed in [6].

The phase retrieval problem is indeed a non-linear non-
convex inverse problem. The original signal x ∈ CN can only
be recovered up to a global phase ambiguity as x · ejφ yields
the same intensity measurements. In general, the number of
measurements M should exceed the dimension of the signal
N . On the theoretical side, the authors in [7] have proved that
the number of measurements M should at least be on the order
of N log N for a successful recovery with high probability
when the measurement vectors are chosen independently and
uniformly at random on the unit sphere. Furthermore, result has
been established that M ≥ 4N − 4 measurements are sufficient
to reconstruct the original signal x ∈ CN up to a global phase
uncertainty by designing specific measurement vectors [8], [9].
When N = 2n + 1, n = 1, 2, . . .∞, M ≥ 4N − 4 measure-
ments are also necessary [9]. A conjecture has been posed in
[10] that M = 4N − 4 measurements are both necessary and
sufficient for phase retrieval. In special cases where N = 2 and
N = 3, the conjecture has been proved valid. However, when
N = 4, a counterexample has been presented in [11] to success-
fully recover a signal in C4 from only 4N − 5 = 11 injective
measurements. On the algorithmic side, it has been verified
empirically that M ≈ 4N measurements are required to recover
the original signal x ∈ CN with high successful rate (close to
1) when the measurement vectors are drawn from independent
and identical complex Gaussian distributions [12]. As for a real-
valued signal, M ≥ 2N − 1 measurements have been proved to
be both necessary and sufficient to recover x ∈ RN up to a sign
change [13].

The undersampled phase retrieval problem considers recov-
ering an N -dimensional complex-valued signal (up to a global
phase ambiguity) from only M < N noisy magnitudes of the
linear measurements. One potential approach is to exploit spar-
sity in the original signal [14]–[16]. It has been proved that
M ≥ 8K − 2 measurements are sufficient to recover a K-sparse
(at most K non-zero elements) complex-valued signal x ∈ CN

using random Gaussian measurement vectors (M ≥ 4K − 1 for
real-valued case) [16]. Encouragingly, it is possible to recover a
signal with fewer intensity measurements than its actual dimen-
sion (M < N ).

Most existing algorithms on undersampled phase retrieval ei-
ther directly add a constraint to guarantee sparsity [17], [18] or
incorporate an additional term in the objective function to pro-
mote sparsity [19], [20]. The convex �1 norm penalty term ‖x‖1
is well-known for producing sparse solutions. [18] and [20]
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share the same idea of incorporating into the classical Fienup
algorithm [21] a projection step to a set of sparse signals. But
[18] requires the exact number of the sparsity level K, and
[20] requires the exact value of ‖x‖1 , which are not available
in practice. The authors in [17] combine the damped Gauss-
Newton method and the 2-opt local search method to iteratively
update the solution and its support with rough information on
the sparsity level K. But the combinatorial nature in the support
update procedure makes this algorithm impractical when K is
relatively large. A convex semidefinite programming problem
has also been proposed to solve the undersampled phase retrieval
problem through the matrix-lifting technique (introducing a new
variable X := xxH ) [22]. But the dimension increase in the
lifting procedure limits the application to small scale problems.
Another different approach is based on the generalized approx-
imate message passing [23]. But assumptions on the signal and
noise probability distributions may not be accurate. Recently,
one robust algorithm (UPRwO) [19] has been shown to have
small reconstruction error when the intensity measurements are
corrupted with outliers and noise.

In this paper, we propose two efficient algorithms based on
the majorization-minimization framework to solve the under-
sampled phase retrieval problem under two different problem
settings. The first algorithm C-PRIME is a simple extension of
[12] when the original signal is sparse in the standard basis. The
second algorithm SC-PRIME is the main contribution of this
paper, considering more general cases where the unknown sig-
nals are not sparse in the standard basis. We share the same idea
of applying the sparse coding techniques to the phase retrieval
problem [24], inspired by the fact that a lot of image and video
signals can be sparsely approximated by a linear combination of
a few columns in a dictionary [25]–[28]. Recently, the authors in
[24] have shown encouraging results of exploiting sparse coding
for the oversampled phase retrieval problem (DOLPHIn algo-
rithm). In this paper, we propose an efficient algorithm to solve
the undersampled phase retrieval problem by jointly designing
the dictionary and the sparse codes.

The main contributions of this paper are two algorithms for
the undersampled phase retrieval problem with the following
properties:

1) Improved performance compared to the benchmark meth-
ods UPRwO and DOLPHIn;

2) Monotonicity and convergence guarantee of the sequence
of points generated by the proposed algorithms;

3) Lower (or similar) computational complexity and faster
(or similar) convergence speed compared to state-of-the-
art methods UPRwO and DOLPHIn.

The remaining sections are organized as follows. We first
provide a brief introduction of the majorization-minimization
framework in Section II. Later, we propose an algorithm to
solve the undersampled phase retrieval problem of sparse sig-
nals using the majorization-minimization techniques. When the
unknown signals are not sparse in the standard basis, we pro-
pose another algorithm in Section III to solve the undersampled
phase retrieval problem through sparse coding. Convergence
analysis and computational complexity for both algorithms are
provided in Section IV. Numerical results and comparisons with

up-to-date benchmark methods are presented and discussed in
Section V. Finally, we conclude our work in Section VI.

Notation: Boldface upper case letters (e.g., X,A) denote
matrices, boldface lower case letters (e.g., x,a) denote column
vectors, and italics (e.g., x, a,D) denote scalars. R and C denote
the field of real-valued numbers and the field of complex-valued
numbers, respectively. For any complex-valued number x, |x|
denotes its magnitude, arg(x) denotes its phase, Re[x] denotes
its real part, and Im[x] denotes its imaginary part. The super-
scripts (·)T , (·)∗, and (·)H denote transpose, conjugate, and
conjugate transpose, respectively. The curled inequality sym-
bol � is used to denote generalized inequality; a � b means
element-wise ai ≥ bi,∀i; and A � B means that A−B is a
Hermitian positive semidefinite matrix. In is the n× n identity
matrix (or simply I when no confusion is caused). λmax(A) de-
notes the largest eigenvalue of a Hermitian matrix A.
 denotes
the Hadamard (element-wise) product of two matrices or vec-
tors of the same size. 1 is a matrix or vector with all elements 1,
and 0 all elements 0. For a vector x ∈ CN , [x]n (or xn ) denotes

its n-th element, ‖x‖2 :=
√
∑N

n=1 |xn |2 denotes its Euclidean

norm, and ‖x‖1 :=
∑N

n=1 |xn | denotes its �1 norm, with | · | de-
noting modulus for complex-valued numbers and absolute value
for real-valued numbers. For a matrix X ∈ CM×N , [X]mn (or
xmn ) denotes its element at the m-th row and the n-th column,

‖X‖F :=
√
∑M

m=1
∑N

n=1 |xmn |2 denotes its Frobenius norm,

and X† denotes its Moore-Penrose pseudoinverse.

II. COMPRESSIVE PHASE RETRIEVAL VIA

MAJORIZATION-MINIMIZATION

In this section, we first provide a brief overview of the general
majorization-minimization (MM) framework. Later, we propose
a simple iterative algorithm C-PRIME to solve the undersampled
phase retrieval problem of sparse signals via the MM techniques.
This algorithm is a direct extension of our previous paper [12]
but serves as a warm up for the next section where we propose
the SC-PRIME algorithm to deal with more general cases when
the unknown signals are not sparse in the standard basis.

A. The MM Algorithm

The majorization-minimization (MM) algorithm [29], [30] is
an iterative optimization method. Instead of solving the original
difficult problem, an MM algorithm deals with simple surrogate
problems to produce a sequence of points that can drive the
original objective function downhill.

For a real-valued function f(θ), any function g(θ | θ(m )) sat-
isfying the following two conditions is a majorization function
of f(θ) at the point θ(m ) :

g(θ | θ(m )) ≥ f(θ), ∀θ,

g(θ(m ) | θ(m )) = f(θ(m )). (2)

The function g(θ | θ(m )) is a global upper bound of f(θ) and
touches it at the point θ(m ) . In addition, f(θ) is said to be
majorized by g(θ | θ(m )) at point θ(m ) if g(θ | θ(m )) is a ma-
jorization function of f(θ) at point θ(m ) .



QIU AND PALOMAR: UNDERSAMPLED SPARSE PHASE RETRIEVAL VIA MAJORIZATION–MINIMIZATION 5959

Initialized by any feasible point θ(0) , an MM algorithm gen-
erates a sequence of points {θ(m )}m according to the updating
rule

θ(m+1) ∈ arg min
θ

g(θ | θ(m )). (3)

This sequence of points {θ(m )}m can drive the original objective
function f(θ) downhill:

f(θ(m+1)) ≤ g(θ(m+1) | θ(m )) ≤ g(θ(m ) | θ(m )) = f(θ(m )).
(4)

The first inequality and the first equality come from the defini-
tion of the majorization function (2). The second inequality is
valid because θ(m+1) is a minimizer of g(θ | θ(m )) according
to (3).

B. C-PRIME

Instead of using the intensity measurements {yi}Mi=1 , we can
use the modulus information {√yi}Mi=1 as in [31], [32] (we
assume yi ≥ 0 otherwise we just discard this measurement).
Justification on the advantage of using modulus information
{√yi}Mi=1 over intensity information {yi}Mi=1 is provided in
Appendix A. We consider the following problem to balance the
importance of minimizing the sum of squared error and utilizing
the prior sparsity information of the original signal:

minimize
x∈CN

M∑

i=1

(√
yi −

∣
∣aH

i x
∣
∣
)2

+ ρ ‖x‖1 . (5)

The first data fitting term measures how well the signal x fits
the modulus information. The second term promotes sparsity
in x, where ρ > 0 is a regularization parameter. If we de-
fine the measurement matrix A := [a1 , . . . ,aM ]H ∈ CM×N

and stack the modulus information together as a vector
√

y :=
[
√

y1 , . . . ,
√

yM ]T ∈ RM , problem (5) can be formulated as

minimize
x∈CN

‖√y − |Ax|‖22 + ρ ‖x‖1 . (6)

Here the square root operator
√· and the modulus operator

| · | are applied element-wise. This problem is not convex due
to the modulus operator. Using the majorization-minimization
technique, we propose an efficient method to solve the convex
surrogate problem instead. Note that

‖√y − |Ax|‖22 = xH AH Ax− 2
√

yT |Ax|+ const., (7)

where const. is a constant independent from the variable x.
Proposition 1: Let L be an N ×N Hermitian matrix and M

be another N ×N Hermitian matrix such that M � L. Then for
any point x0 ∈ CN , the quadratic function xH Lx is majorized
by xH Mx + 2Re[xH (L−M)x0 ] + xH

0 (M− L)x0 at x0 .
Proof: It is easy to verify the equality condition at point

x0 . The inequality condition is valid simply by rearranging the
terms in (x− x0)H (M− L)(x− x0) ≥ 0. �

According to Proposition 1, by treating AH A as L and C · I
as M for any constant C ≥ λmax(AH A), xH AH Ax can be

majorized1 as

xH AH Ax ≤ CxH x + 2Re
[

xH
(

AH A− CI
)

x(k)
]

+ const.

(8)
at any point x(k) . Further, since

|Ax| =
∣
∣
∣(Ax)
 e−j arg(Ax(k ) )

∣
∣
∣

� Re
[

(Ax)
 e−j arg(Ax(k ) )
]

, (9)

where e(·) and arg(·) are applied element-wise when the argu-
ment is a vector, −2

√
yT |Ax| can be majorized as

−2
√

yT |Ax| ≤ −2
√

yT Re
[

(Ax)
 e−j arg(Ax(k ) )
]

= −2Re
[(√

y 
 e−j arg(Ax(k ) )
)T

Ax
]

. (10)

Combining these two majorization functions together, the cor-
responding surrogate problem for (5) is

minimize
x∈CN

CxH x + 2Re
[

xH
(

AH A− CI
)

x(k)
]

−2Re
[(√

y 
 e−j arg(Ax(k ) )
)T

Ax
]

+ ρ ‖x‖1 , (11)

which is equivalent to

minimize
x∈CN

C ‖x− c‖22 + ρ ‖x‖1 (12)

if defining the constant vector c as

c := x(k) − 1
C

AH
(

Ax(k) −√y 
 ej arg(Ax(k ) )
)

. (13)

A simple closed-form solution for (12) is

x� = ej arg(c) 
max
{

|c| − ρ

2C
1,0

}

. (14)

Instead of dealing with the original non-convex non-
differentiable problem (5), we only need to solve a surrogate
problem (12) that has a simple closed-form solution at every
iteration. We name our algorithm compressive phase retrieval
via the majorization-minimization technique (C-PRIME for
short) and summarize the procedures in Algorithm 1. In the
algorithm, we also adopt the SQUAREM algorithm [33] to
accelerate the convergence speed. Instead of updating x(k+1)

directly from x(k) at the k-th iteration, SQUAREM seeks an
intermediate point x3 based on x(k) and updates the next point
x(k+1) from x3 . This updating rule may violate the descent
property of the MM framework so we add a backtracking
step (the while loop) to guarantee the descent property. We
repeatedly halve the distance between α and −1 until the
descent property is valid. In the worst case where α = −1, the
intermediate point satisfies x3 = x(k) + 2r + v = x2 , which
ensures that the algorithm will jump out of the while loop. In
the simulation, it only takes several updates α← (α− 1)/2 to
maintain the descent property. Fig. 1 plots the objective value
of the C-PRIME algorithm at different iterations with/without

1It is easy to verify the equality condition at point x(k ) . We omit it for
conciseness from now on.
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Fig. 1. Objective value of the C-PRIME algorithm at different iterations
with/without acceleration using the SQUAREM algorithm; N = 128, M = 64,
K = 4, and ρ = 0.001.

Algorithm 1: C-PRIME.
Input: A,y, ρ, t0 (maximum iteration number)
1: Initial x(0) ← Random vector
2: Choose a constant C ≥ λmax(AH A)
3: for k = 0, . . . , t0 − 1 do
4: c1 = x(k) − 1

C AH (Ax(k) −√y 
 ej arg(Ax(k ) ))
5: x1 = ej arg(c1 ) 
max{|c1 | − ρ

2C 1,0}
6: c2 = x1 − 1

C AH (Ax1 −√y 
 ej arg(Ax1 ))
7: x2 = ej arg(c2 ) 
max{|c2 | − ρ

2C 1,0}
8: r = x1 − x(k)

9: v = x2 − x1 − r
10: α← −‖r‖2‖v‖2
11: x3 ← x(k) − 2αr + α2v
12: while ‖√y − |Ax3 |‖22 + ρ‖x3‖1 > ‖√y
−|Ax2 |‖22 + ρ‖x2‖1 do

13: α← (α− 1)/2
14: x3 ← x(k) − 2αr + α2v
15: end while
16: c3 = x3 − 1

C AH (Ax3 −√y 
 ej arg(Ax3 ))
17: x(k+1) = ej arg(c3 ) 
max{|c3 | − ρ

2C 1,0}
18: end for
Output: x(t0 ) .

acceleration using the SQUAREM algorithm when N = 128,
M = 64, K = 4, and ρ = 0.001. Details of the simulation can
be found in Section V. The SQUAREM algorithm accelerates
the convergence speed of the proposed algorithm significantly
and meanwhile maintains the descent property.

III. SPARSE CODING FOR PHASE RETRIEVAL

In the last section, we proposed a MM-based algorithm to
solve the undersampled phase retrieval problem for signals that
are sparse in the standard basis. But what if the unknown sig-
nals are only sparse with regard to another (known or unknown)

basis,2 or more generally a dictionary?3 Typical examples in-
clude many image processing applications where the target im-
ages are not sparse in the image domain, but instead are sparse
in a transform (e.g., discrete cosine transform or wavelet trans-
form) domain. The authors in [25], [26] have shown the advan-
tage of learning an overcomplete dictionary to sparsely represent
a signal in an image denoising application. Recently, the dictio-
nary learning techniques [27], [28] have also been exploited to
solve the oversampled phase retrieval problem [24]. Inspired by
these sparse coding ideas, we propose an efficient algorithm to
solve the undersampled phase retrieval problem for signals that
are not sparse in the standard basis.

The original signal x ∈ CN is assumed to admit a sparse
approximation over an unknown overcomplete dictionary D ∈
CN×L with L > N ; i.e., x ≈ Dz, and z ∈ CL is the sparse
code. Each column dl in the dictionary D is called an atom
and is restricted to be in the unit ball ‖dl‖2 ≤ 1. The following
problem is considered to jointly recover the signal and design
the dictionary:

minimize
x,D ,z

‖√y − |Ax|‖22 + μ ‖x−Dz‖22 + ρ ‖z‖1
subject to D ∈ D, (15)

where D is a closed convex set defined as

D :=
{

D ∈ CN×L | ‖dl‖2 ≤ 1,∀l = 1, . . . , L
}

. (16)

The data fitting term in the objective function is the same as the
one in (5); the second term measures how well the unknown
signal can be approximated by the dictionary; and the last term
promotes sparse code so that only a few atoms are chosen to
approximate the unknown signal. The two regularization param-
eters μ > 0 and ρ > 0 are used to balance the weights on the
data fitting, the dictionary representation, and the sparse code.
Unfortunately, there is more than one solution for (15) because
the unknown dictionary is considered as a variable.

Assume there are multiple (not necessarily independent) un-
known signals {xp ∈ CN }Pp=1 , (we can divide a high dimen-
sional signal into several equal-length low dimensional signals;
e.g., divide a large image into small patches), and for every signal
xp , we only have a few undersampled intensity measurements
yp ∈ RM ,M < N . Each signal xp is assumed to be sparsely
approximated by a linear combination of a few atoms in a shared
unknown overcomplete dictionaryD ∈ CN×L ;xp ≈ Dzp . The
following problem is considered to recover the multiple original
signals:

minimize
{xp },D ,{zp }

P∑

p=1

(∥
∥
√

yp − |Axp |
∥
∥

2
2 + μ ‖xp −Dzp‖22

+ ρ ‖zp‖1
)

subject to D ∈ D. (17)

2Vector x = Φz where Φ ∈ CN ×N is a basis and z ∈ CN is a sparse
vector.

3Vector x = Dz where D ∈ CN ×L is a dictionary and z ∈ CL is a sparse
vector. Matrix D is named a dictionary in the sense that x can be represented
as a linear combination of the columns in D.
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The number of atoms should be less than the number of unknown
signals, L < P . Otherwise, each signal is trivially represented
by a 1-sparse vector zp after including xp/‖xp‖2 as an atom in
the dictionary.

Problem (17) is not convex, not only because of the modulus
operator, but also because of the quadratic term Dzp . However,
the problem is convex with regard to D if {xp} and {zp} are
fixed. Also, it is convex with regard to {zp} when {xp} and
D are fixed. Another problem is that all variables are tangled
together because of the shared dictionary D. But once D is fixed,
(17) can be separated into P independent smaller problems.
Therefore, we propose to solve this problem using the block
successive upper-bound minimization (BSUM) method [34].

A. Updating the Sparse Codes {zp}
We first consider updating {z(k+1)

p } at the kth iteration. When

{xp} and D are fixed to be {x(k)
p } and D(k) , (17) is equivalent

to

minimize
{zp }

P∑

p=1

(

μ
∥
∥
∥D(k)zp − x(k)

p

∥
∥
∥

2

2
+ ρ ‖zp‖1

)

, (18)

which can be separated into P independent problems:

minimize
zp ∈CL

μ
∥
∥
∥D(k)zp − x(k)

p

∥
∥
∥

2

2
+ ρ ‖zp‖1 . (19)

This is a typical sparse coding problem [28]. If the dictionary
D(k) satisfies (D(k))H D(k) = I (semi-unitary), (19) is equiva-
lent to

minimize
zp ∈CL

μ
∥
∥
∥zp − (D(k))H x(k)

p

∥
∥
∥

2

2
+ ρ ‖zp‖1 , (20)

which has a simple closed-form solution

z�
p = e

j arg
(

(D (k ) )H x(k )
p

)


max
{∣
∣
∣(D(k))H x(k)

p

∣
∣
∣− ρ

2μ
1,0

}

.

(21)
When (D(k))H D(k) �= I, it is difficult to find a closed-form so-
lution for (19) directly. We propose to solve a surrogate problem
instead. According to Proposition 1, ‖D(k)zp − x(k)

p ‖22 can be
majorized as

∥
∥
∥D(k)zp − x(k)

p

∥
∥
∥

2

2

= zH
p (D(k))H D(k)zp − 2Re

[

(x(k)
p )H D(k)zp

]

+ const.

≤ E(k)zH
p zp + 2Re

[

zH
p

(

(D(k))H D(k) − E(k)I
)

z(k)
p

]

− 2Re
[

(x(k)
p )H D(k)zp

]

+ const.

= E(k) ‖zp − ep‖22 + const., (22)

where ep is a constant vector with regard to the variable zp :

ep := z(k)
p − 1

E(k) (D(k))H
(

D(k)z(k)
p − x(k)

p

)

. (23)

The scalar E(k) ≥ λmax((D(k))H D(k)) is a constant, and E(k)

≥ L is sufficient for a valid majorization function (see

Appendix B). Therefore, the surrogate problem for (19) is

minimize
zp ∈CL

μE(k) ‖zp − ep‖22 + ρ ‖zp‖1 , (24)

and it has a simple closed-form solution

z�
p = ej arg(ep ) 
max

{

|ep | − ρ

2μE(k) 1,0
}

. (25)

B. Updating the Estimated Signals {xp}
When D and {zp} are fixed to be D(k) and {z(k+1)

p }, updating
{xp} leads to solving the following problem:

minimize
{xp }

P∑

p=1

(
∥
∥
√

yp − |Axp |
∥
∥

2
2 + μ

∥
∥
∥xp −D(k)z(k+1)

p

∥
∥
∥

2

2

)

,

(26)
which can also be separated into P independent problems:

minimize
xp ∈CN

∥
∥
√

yp − |Axp |
∥
∥

2
2 + μ

∥
∥
∥xp −D(k)z(k+1)

p

∥
∥
∥

2

2
. (27)

This problem is not convex due to the modulus operator. We
solve a surrogate problem instead. According to Proposition 1
and (10), choosing a constant F ≥ λmax(AH A), the objective
function can be majorized as

∥
∥
√

yp − |Axp |
∥
∥

2
2 + μ

∥
∥
∥xp −D(k)z(k+1)

p

∥
∥
∥

2

2

= xH
p AH Axp − 2

√
yp

T |Axp |

+ μxH
p xp − 2μRe

[

xH
p D(k)z(k+1)

p

]

+ const.

≤ FxH
p xp + 2Re

[

xH
p

(

AH A− F I
)

x(k)
p

]

− 2Re

[(√
yp 
 e

−j arg
(

Ax(k )
p

))T

Axp

]

+ μxH
p xp − 2μRe

[

xH
p D(k)z(k+1)

p

]

+ const.

= (F + μ) ‖xp − fp‖22 + const., (28)

where fp is a constant vector with regard to the variable xp :

fp :=
1

F + μ

[

Fx(k)
p −AH

(

Ax(k)
p −√yp 
 e

j arg
(

Ax(k )
p

))

+μD(k)z(k+1)
p

]

. (29)

Therefore, the surrogate problem for (27) is

minimize
xp ∈CN

(F + μ) ‖xp − fp‖22 , (30)

and it has a simple closed-form solution

x�
p = fp . (31)

The constant vector fp is similar to the constant vector c in
(13), which was used to update the solution in the last section.
The additional term μD(k)z(k+1)

p in fp is due to the second
approximation over the dictionary term in (17).
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C. Updating the Dictionary D

The final step is to update the dictionary D fixing {xp} and

{zp} as {x(k+1)
p } and {z(k+1)

p }. Since the regularization param-
eter μ ≥ 0, we need to solve the following problem:

minimize
D∈CN ×L

P∑

p=1

∥
∥
∥x(k+1)

p −Dz(k+1)
p

∥
∥
∥

2

2

subject to D ∈ D, (32)

which can be formulated in a more compact form:

minimize
D∈CN ×L

∥
∥
∥X(k+1) −DZ(k+1)

∥
∥
∥

2

F

subject to D ∈ D, (33)

where X(k+1) := [x(k+1)
1 , . . . ,x(k+1)

P ] ∈ CN×P and Z(k+1) :=
[z(k+1)

1 , . . . , z(k+1)
P ] ∈ CL×P . This problem is convex, but

it is not easy to find a closed-form solution. Matrix
X(k+1)(Z(k+1))H (Z(k+1)(Z(k+1))H )−1 is a solution if not
having the constraint D ∈ D and assuming Z(k+1)(Z(k+1))H is
invertible. Instead of treating D as one variable, we can divide it
into L different variables {dl}Ll=1 and update them one by one
while keeping the others fixed. To update the l-th column dl ,
we only need to solve the following problem:

minimize
d l ∈CN

∥
∥
∥X(k+1) −D(k)Z(k+1) +

(

d(k)
l − dl

)

z(k+1)
l,T

∥
∥
∥

2

F

subject to ‖dl‖2 ≤ 1, (34)

where z(k+1)
l,T is a row vector denoting the l-th row of Z(k+1) .

The objective function in (34) satisfies
∥
∥
∥X(k+1) −D(k)Z(k+1) +

(

d(k)
l − dl

)

z(k+1)
l,T

∥
∥
∥

2

F

= ‖dl‖22 · ‖z(k+1)
l,T ‖22 − 2Re

[

dH
l

(

X(k+1) −D(k)Z(k+1)

+d(k)
l z(k+1)

l,T

)

(z(k+1)
l,T )H

]

+ const.

= ‖z(k+1)
l,T ‖22 · ‖dl − gl‖22 + const., (35)

where gl is a constant vector with regard to the variable dl :

gl := d(k)
l +

1

‖z(k+1)
l,T ‖22

(

X(k+1) −D(k)Z(k+1)
)

(z(k+1)
l,T )H .

(36)
So problem (34) is equivalent to

minimize
d l ∈CN

‖z(k+1)
l,T ‖22 · ‖dl − gl‖22

subject to ‖dl‖2 ≤ 1, (37)

which has a simple closed-form solution

d�
l =

gl

max {‖gl‖2 , 1} . (38)

Finally, the procedures are summarized in Algorithm 2. We
name the algorithm sparse coding for phase retrieval via the
majorization-minimization technique (SC-PRIME for short).
The estimated signals X(0) and the dictionary D(0) are ini-
tialized as random matrices (the columns of D(0) are scaled if

Algorithm 2: SC-PRIME.
Input: A,Y, μ, ρ, t0 (maximum iteration number)
1: Initial X(0) ← Random matrix
2: Initial D(0) ← Random matrix (‖d(0)

l ‖2 ≤ 1)
3: Initial Z(0) ← ((D(0))H D(0))†(D(0))H X(0)

4: Choose a constant F ≥ λmax(AH A)
5: for k = 0, . . . , t0 − 1 do
6: Choose a constant E(k) ≥ λmax((D(k))H D(k))
7: E← Z(k) − 1

E (k ) (D(k))H (D(k)Z(k) −X(k))
8: Z(k+1) = ej arg(E) 
max{|E| − ρ

2E (k ) μ
1,0}.

9:
X(k+1) =

1
F + μ

[FX(k) −AH (AX(k)

−
√

Y 
 ej arg(AX (k ) )) + μD(k)Z(k+1)]
10: parfor l = 1, . . . , L do

11: gl ← d(k)
l +

(X (k + 1 )−D (k ) Z (k + 1 ) )(z(k + 1 )
l , T )H

‖z(k + 1 )
l , T ‖22

12: d(k+1)
l = g l

max{‖g l ‖2 ,1}
13: end parfor
14: end for
Output: X(t0 ) ,D(t0 ) ,Z(t0 ) .

necessary to ensure the feasibility D(0) ∈ D). The sparse codes
matrix Z(0) is initialized as the value that minimizes ‖X(0) −
D(0)Z‖2F . The matrix Y in step 9 is Y := [y1 , . . . ,yP ]
∈ RM×P . We only need to calculate the matrix X(k+1) −
D(k)Z(k+1) once to update {dl}Ll=1 in parallel.

IV. CONVERGENCE OF ALGORITHMS

A. Convergence Analysis

Inherited from the majorization-minimization framework, the
non-increasing property (4) holds for any surrogate problem. In
addition, the objective value in (5) is lower-bounded by 0. So the
objective sequence {f(x(k))}k generated by C-PRIME is guar-
anteed to converge to a finite point at least. Similarly, the objec-
tive sequence {f(X(k) ,D(k) ,Z(k))}k generated by SC-PRIME
also converges to a finite point—because the block successive
upper-bound minimization (BSUM) algorithm also maintains
the non-increasing property, and because the objective value in
(17) is also lower-bounded by 0. Besides the objective sequence,
the solution sequence generated by C-PRIME and SC-PRIME
also converges according to the following two propositions.

Proposition 2: Every limit point of the solution sequence
{x(k)}k generated by the C-PRIME algorithm is a stationary
point of problem (5).

Proof: See Appendix C. �
Proposition 3: Every limit point of the solution sequence

{X(k) ,D(k) ,Z(k)}k generated by the SC-PRIME algorithm is
a coordinate-wise stationary point of problem (17).

Proof: See Appendix D. �

B. Computational Complexity

The updating procedures of C-PRIME and SC-PRIME only
require basic matrix and vector operations. To recover a signal
that is sparse in the standard basis, C-PRIME has a computa-
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tional complexityO(MN) under a general measurement matrix
setting, andO(M log M) under a DFT measurement matrix set-
ting by exploiting fast Fourier transform and inverse fast Fourier
transform. When the unknown signal is not sparse in the stan-
dard basis, SC-PRIME utilizes the sparse coding techniques to
approximate the unknown signal by a linear combination of a
few columns in a dictionary. The computational complexity of
SC-PRIME is O(LNP ).

V. SIMULATION RESULTS

In this section, we investigate the numerical performance of
the proposed algorithms, C-PRIME and SC-PRIME, and com-
pare them with two up-to-date benchmark methods: UPRwO
[19] and DOLPHIn [24], respectively. Simulation results val-
idate that C-PRIME and SC-PRIME outperform their corre-
sponding benchmark method in terms of successful recovery
rate and normalized mean square error under the same setting.
All experiments are conducted on a computer with a 3.20 GHz
Intel Core i5-4570 CPU and 8.00 GB RAM running Matlab
R2014b.

A. C-PRIME vs. UPRwO

We first investigate the performance of C-PRIME and com-
pare it with the benchmark method UPRwO [19]. To implement
the UPRwO algorithm, we use the code provided on the authors’
homepage.4 We set the number of outliers to 0 and choose the
additive white Gaussian noise setting. All other parameters are
set as the default value. The default signal-to-noise ratio (SNR)
is 40 dB.

The initialization steps of the UPRwO algorithm are summa-
rized below:

1) Generating a random original signal xo ∈ CN with car-
dinality K, where the support is also randomly selected;

2) Forming the measurement matrix A ∈ CM×N by ran-
domly selecting M rows in the N ×N unitary DFT ma-
trix (in this way AAH = IM and IN � AH A);

3) Generating the intensity measurements y = |Axo |2 + n,
wheren := [n1 , . . . , nM ]T ∈ RM is a vector representing
the additive white Gaussian noise.

For a fair comparison, we run the UPRwO code first with a
fixed (N,M,K) value. Besides the final results, we also store
the original signal xo , the measurement matrix A, and the inten-
sity measurements y. Later, we run our C-PRIME code using
the same measurement matrix A and intensity measurements y
from the UPRwO simulation.

In detail, the length of the original signal N is set as the
default value 128. Since we consider the undersampled phase
retrieval problem, the number of intensity measurements is
limited to be M ∈ {128, 64, 32, 16, 8}, and the sparsity level
is set to be K ∈ {16, 8, 4, 2} (a value larger than 16 ends up
with unsuccessful recovery). For each of these possible (M,K)
pairs, both algorithms are tested using the same measurement
matrix and intensity measurements. Multiple random initializa-
tions are used by the benchmark method UPRwO in order to

4http://people.virginia.edu/˜dsw8c/sw.html

TABLE I
SUCCESSFUL RECOVERY RATE OF UPRWO AND C-PRIME (PROPOSED) FOR AN

N = 128-LENGTH COMPLEX-VALUED SIGNAL UNDER DIFFERENT (M, K )
SETTINGS. THE VALUE IS PRESENTED AS (UPRWO, C-PRIME)

TABLE II
NORMALIZED MEAN SQUARE ERROR (NMSE) OF UPRWO AND C-PRIME
(PROPOSED) FOR AN N = 128-LENGTH COMPLEX-VALUED SIGNAL UNDER

DIFFERENT (M, K ) SETTINGS. THE VALUE IS PRESENTED AS

(UPRWO, C-PRIME)

TABLE III
AVERAGE CPU TIME OF UPRWO AND C-PRIME (PROPOSED) FOR AN

N = 128-LENGTH COMPLEX-VALUED SIGNAL UNDER DIFFERENT (M, K )
SETTINGS. THE VALUE IS PRESENTED AS (UPRWO, C-PRIME)

increase the chance of finding the global optimal solution of
the non-convex phase retrieval problem; specifically, 50 initial-
izations are performed when M < N , and 100 when M = N .
The proposed algorithm C-PRIME uses the identical number of
random initializations for the same purpose of finding the global
optimal solution of the non-convex problem (5) with a higher
probability.

Note that under the DFT measurement matrix setting, any
individual or combination of the following three trivial ambigu-
ities conserve the Fourier magnitude:

1) Global constant phase shift: x→ x · ejφ ,
2) Circular shift: [x]i → [x](i+i0 ) mod N ,
3) Conjugate inversion: [x]i → [x]∗N−i .
A disambiguation step is necessary to find the unique solution.

For each solution x� returned by UPRwO and C-PRIME, we
check all the possible candidates within the trivial ambiguities
and choose the one with least normalized squared error (NSE)
with regard to the original signal xo as the final solution. The
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Fig. 2. Reconstruction results of DOLPHIn and SC-PRIME (proposed) on the 512 × 512 color mandrill image. (a) the original image; (b) image reconstructed
by DOLPHIn, PSNR = 14.84 dB, SSIM = 0.4148, t = 127.0 s; (c) image reconstructed by SC-PRIME, PSNR = 17.17 dB, SSIM = 0.5773, t = 76.79 s.

Fig. 3. Reconstruction results of DOLPHIn and SC-PRIME (proposed) on the 2816 × 2112 color waldspirale image. (a) the original image; (b) image
reconstructed by DOLPHIn, PSNR = 10.81 dB, SSIM = 0.1143, t = 3061 s; (c) image reconstructed by SC-PRIME, PSNR = 20.60 dB, SSIM = 0.6583, t
= 1429 s.

NSE between x� and xo is calculated as

NSE(x� ,xo) = min
x∈S(x� )

‖x− xo‖22
‖xo‖22

, (39)

where the set S(x�) contains all the possible signals within the
trivial ambiguities of x� . Furthermore, since the original signal
is generated as a random vector, the normalized mean square
error (NMSE) is averaged over 100 Monte Carlo simulations for
every (M,K) pair. Among these 100 Monte Carlo simulations,
an algorithm is considered to successfully recover the original
signal if the corresponding NSE is less than 10−3 .

Final experimental results of UPRwO and C-PRIME are pre-
sented in Table I on the successful recovery rate and Table II on
the NMSE. Under most of the (M,K) settings, the proposed
algorithm C-PRIME has a larger successful recovery rate and
less NMSE than the benchmark algorithm UPRwO. Both algo-
rithms can retrieve the original signal with high probability when
M ≥ 16K, but neither performance very well when M ≤ 8K.
Note that UPRwO has a double loop and needs to tune a lot of
parameters. In comparison, the proposed algorithm C-PRIME
only has one parameter ρ/C. The constant C is set as C = 1
since IN � AH A, and ρ = 0.001 is used in the simulations. In
addition, the maximum iteration number t0 in Algorithm 1 is set
as t0 = 5000. The average CPU time of UPRwO and C-PRIME
over the 100 Monte Carlo simulations is presented in Table III.
Both algorithms have a similar computational time.

B. SC-PRIME vs. DOLPHIn

We now investigate the performance of SC-PRIME and com-
pare it with the benchmark method DOLPHIn [24] on practical
test images. To implement DOLPHIn, we use the code provided
on the authors’ homepage.5 The test images are also down-
loaded from the same website. We choose the Gaussian mea-
surement matrix setting and change the sampling rate from 4 to
0.5 (M = 0.5N ) to set up a valid undersampled phase retrieval
problem.6 All other parameters are kept as the default value.

At the initialization step, the DOLPHIn algorithm takes the
2D image as the original signal, thereby generating the inten-
sity measurements using a random complex-valued Gaussian
measurement matrix. The intensity measurements are corrupted
with additive white Gaussian noise. The default SNR is 15 dB.
First, we run the DOLPHIn code and store the measurement
matrix as well as the noisy intensity measurements. Later, we
run the SC-PRIME code using the same measurement matrix
and noisy intensity measurements. The test images are divided
into 8× 8 non-overlapping patches (i.e., N = 64), and the num-
ber of columns in the dictionary is set as L = 2N . There is a

5http://www.mathematik.tu-darmstadt.de/˜tillmann/#software
6The DOLPHIn algorithm [24] considers the oversampled phase retrieval

problem where the default sampling rate is 4 in the code, i.e., M = 4N . In this
paper, we consider the undersampled phase retrieval problem where the number
of intensity measurements is less than the dimension of the unknown signal,
i.e., M ≤ N . When M = 4N , both algorithms can reconstruct the images with
high visual quality, and SC-PRIME (proposed) still outperforms DOLPHIn in
terms of PSNR and SSIM.
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Fig. 4. Dictionary learned by DOLPHIn and SC-PRIME (proposed) for the red channel on the 2816 × 2112 color waldspirale image (Fig. 3(a)).

TABLE IV
RECONSTRUCTION RESULTS OF DOLPHIN AND SC-PRIME (PROPOSED) ON DIFFERENT TEST IMAGES

TABLE V
AVERAGE CPU TIME OF DOLPHIN AND SC-PRIME (PROPOSED) ON DIFFERENT TEST IMAGES

sorting step between the image signal and the patch-based sig-
nal in [24]. The corresponding change in the implementation of
SC-PRIME is easy as changing the order of the elements in a
matrix conserves its Frobenius norm. The regularization param-
eter μ is set as μ = NP /80 where NP is the number of pixels
in the test image. The other regularization parameter ρ is set as
ρ = 0.42 μ.

To evaluate the quality of the reconstructed images, two stan-
dard image quality metrics are considered, namely, the peak
signal-to-noise ratio (PSNR) and the structural similarity index
(SSIM). PSNR is the ratio between the maximum possible power
of the original image and the mean squared error between the re-
constructed image and the original image. It is usually expressed
in terms of the logarithmic decibel scale, and the larger the value
the better the image quality. SSIM reflects the structural simi-
larities between the reconstructed image and the original image.
It is on a scale from 0 to 1, and a larger value represents more
similarities in the structure.

Final reconstruction results of DOLPHIn and SC-PRIME
are presented in Fig. 2 on the 512× 512 color mandrill im-
age and Fig. 3 on the 2816× 2112 color waldspirale image.
The three different channels, red, green, and blue, are processed

independently and sequentially. In both figures, the proposed
algorithm SC-PRIME can reconstruct the image with a larger
PSNR and SSIM value (averaged over three channels) as well
as an impressively better visual quality than the benchmark al-
gorithm DOLPHIn. Fig. 4 plots the learned dictionary (each
column is arranged as an 8× 8 patch) for the red channel by
both algorithms on the 2816× 2112 color waldspirale image
(Fig. 3(a)). The horizontal streaks in the learned dictionary
most likely result in the visible horizontal artifacts of the re-
constructed images in Figs. 2 and 3 as each patch in the re-
constructed image is a linear combination of the columns in
the learned dictionary. Moreover, the PSNR and SSIM value
of the reconstructed images for both algorithms on the rest of
the test images (grayscale) is summarized in Table IV. Besides
the results of the reconstructed images (X� ), we also include
the results of images approximated by the dictionary (D�Z� ).
All numbers in the table are averaged over 100 Monte Carlo
simulations as the intensity measurements are corrupted with
additive white Gaussian noise. For each of these test images,
SC-PRIME can reconstruct the image with a larger PSNR and
SSIM value than DOLPHIn, either directly from X� or through
the dictionary approximation D�Z� . Interestingly, the images
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approximated by the dictionary D�Z� can have a slightly larger
PSNR and SSIM value than those reconstructed directly from
X� . In addition, the average CPU time of both algorithms over
the 100 Monte Carlo simulations is presented in Table V. The
proposed algorithm SC-PRIME needs slightly more CPU time
than the benchmark method DOLPHIn.

VI. CONCLUSION

Undersampled phase retrieval aims at recovering an N -
dimensional complex-valued signal from only M < N inten-
sity measurements. It is a non-convex and under-determined
inverse problem. In this paper, we have proposed two effi-
cient algorithms, exploiting the sparsity in the original signal, to
solve the undersampled phase retrieval problem. Based on the
majorization-minimization framework, the proposed algorithms
solve a simple convex surrogate problem at every iteration with a
closed-form solution that monotonically decreases the objective
function value. When the unknown signal is sparse in the stan-
dard basis, the first algorithm C-PRIME can produce a stationary
point of the corresponding non-convex phase retrieval problem.
When the unknown signal is not sparse in the standard basis,
the second algorithm SC-PRIME can find a coordinate-wise
stationary point of the more challenging phase retrieval prob-
lem through sparse coding. According to experimental results
on randomly generated data and practical test images, the pro-
posed algorithms have higher successful recovery rate and less
normalized mean square error than existing up-to-date methods
under the same setting.

APPENDIX A
JUSTIFICATION FOR USING MODULUS INFORMATION

Recall the M noisy intensity measurements

yi =
∣
∣aH

i x
∣
∣
2

+ ni, i = 1, . . . ,M, (40)

and the additive noise {ni} is assumed to be independent
from the intensity measurements. We assume yi ≥ 0 (other-
wise we just discard this measurement). Therefore, the modulus
information is

√
yi =

√
∣
∣aH

i x
∣
∣
2 + ni =

∣
∣aH

i x
∣
∣

√

1 +
ni

∣
∣aH

i x
∣
∣
2 , ∀i. (41)

Usually the noise level is much smaller than the value of the
clean intensity measurements, |ni | � |aH

i x|2 . It is sufficient to
make the following approximation, taking the first two terms in
the Taylor series:

√

1 +
ni

∣
∣aH

i x
∣
∣
2 ≈ 1 +

ni

2
∣
∣aH

i x
∣
∣
2 , ∀i. (42)

So the modulus information satisfies
√

yi ≈
∣
∣aH

i x
∣
∣+

ni

2
∣
∣aH

i x
∣
∣
, ∀i. (43)

The first term |aH
i x| is the clean modulus information, and

the second term can be regarded as the additive noise, with

expectation

E

[

ni

2
∣
∣aH

i x
∣
∣

]

=
E [ni ]

2
∣
∣aH

i x
∣
∣
, ∀i (44)

and variance

Var

[

ni

2
∣
∣aH

i x
∣
∣

]

=
Var [ni ]

4
∣
∣aH

i x
∣
∣
2 , ∀i. (45)

Therefore, the additive noise to the clean modulus information
|aH

i x| has smaller expectation value and variance value than the
additive noise to the clean intensity information |aH

i x|2 when
|aH

i x| > 1
2 . In addition, the signal-to-noise ratio (SNR) of the

modulus information

20 log10

∣
∣aH

i x
∣
∣

|ni |
2|aH

i x|
= 20 log10

2
∣
∣aH

i x
∣
∣
2

|ni | (46)

is larger than the SNR of the intensity measurement

20 log10

∣
∣aH

i x
∣
∣
2

|ni | . (47)

APPENDIX B
PROOF OF λmax((D(k))H D(k)) ≤ L

Note that the dictionary D(k) = [d(k)
1 , . . . ,d(k)

L ] satisfies

‖d(k)
l ‖2 ≤ 1,∀l = 1, . . . , L, so

λmax

(

(D(k))H D(k)
)

= λmax

(

D(k)(D(k))H
)

= max
t �=0

tH D(k)(D(k))H t

‖t‖22
= max

t �=0

L∑

l=1

∣
∣
∣tH d(k)

l

∣
∣
∣

2

‖t‖22

≤ max
t �=0

L∑

l=1

‖t‖22 · ‖d(k)
l ‖22

‖t‖22
=

L∑

l=1

‖d(k)
l ‖22 ≤ L. (48)

The equality is achieved when all of the vectors {d(k)
l } lie on

the same line and ‖d(k)
l ‖2 = 1,∀l.

APPENDIX C
PROOF OF PROPOSITION 2

The objective function in (5) is a mapping from CN to
R, which is not holomorphic and therefore not complex-
differentiable. We find an equivalent problem in the field of
real-valued numbers. Defining a new real-valued variable x̃ as

x̃ :=

[

Re [x]
Im [x]

]

∈ R2N (49)

and constant symmetric matrices {Ãi}Mi=1 as in (50) shown at
the bottom of the next page, it is easy to verify that

x̃T Ãi x̃ =
∣
∣aH

i x
∣
∣
2 ≥ 0, ∀i = 1, . . . , M. (51)
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Therefore, (5) is equivalent to the following problem in the field
of real-valued numbers:

minimize
x̃∈R2 N

M∑

i=1

(√
yi −

√

x̃T Ãi x̃
)2

+ ρ
N∑

i=1

√

[x̃]2i + [x̃]2i+N .

(52)
The corresponding surrogate problem (12) is equivalent to

minimize
x̃∈R2 N

C ‖x̃− c̃‖22 + ρ

N∑

i=1

√

[x̃]2i + [x̃]2i+N , (53)

where c̃ ∈ R2N is a constant vector defined as

c̃ := x̃(k) − 1
C

M∑

i=1

Ãi x̃(k)

⎛

⎝1−
√

yi
√

(x̃(k))T Ãi x̃(k)

⎞

⎠ . (54)

The objective function f̃(x̃) in (52) can be majorized by the
following function at any point x̃(k) :

g̃(x̃ | x̃(k)) := C ‖x̃− c̃‖22 + ρ

N∑

i=1

√

[x̃]2i + [x̃]2i+N

− C ‖c̃‖22 + ‖√y‖22 + C‖x̃(k)‖22 +
M∑

i=1

(x̃(k))T Ãi x̃(k) . (55)

This majorization function g̃(x̃ | x̃(k)) is actually the objective
function in (53) plus four constant terms. Letting x̃(k+1) be
the solution to the convex surrogate problem (53), the decent
property is still maintained:

f̃(x̃(k+1)) ≤ g̃(x̃(k+1) | x̃(k)) ≤ g̃(x̃(k) | x̃(k)) = f̃(x̃(k)).
(56)

Since {f̃(x̃(k))} is a non-increasing sequence and is lower-
bounded by 0, it will converge to a stationary point. Assume
there exists a subsequence {x̃(kl )} that converges to a limit
point z̃. Then

g̃(x̃(kl + 1 ) | x̃(kl + 1 )) = f̃(x̃(kl + 1 )) ≤ f̃(x̃(kl +1))

≤ g̃(x̃(kl +1) | x̃(kl )) ≤ g̃(x̃ | x̃(kl )), ∀x̃. (57)

Letting l→ +∞, we obtain

g̃(z̃ | z̃) ≤ g̃(x̃ | z̃), ∀x̃, (58)

which implies

∇g̃(x̃ | z̃)
∣
∣
x̃= z̃ = 0. (59)

Furthermore, it is easy to verify the following equality at any
point x̃(k) :

∇g̃(x̃ | x̃(k))
∣
∣
x̃= x̃(k ) = ∇f̃(x̃)

∣
∣
x̃= x̃(k ) , (60)

hence at the limiting point z̃

∇f̃(x̃)
∣
∣
x̃= z̃ = ∇g̃(x̃ | z̃)

∣
∣
x̃= z̃ = 0, (61)

which implies that z̃ is a stationary point of f̃(x̃). Since (49)
is an injective mapping, we can always project the real-valued
variable x̃ back to the complex-valued variable x. Therefore,
every limit point of the sequence generated by the C-PRIME
algorithm is a stationary point of problem (5).

APPENDIX D
PROOF OF PROPOSITION 3

SC-PRIME fits the framework of the BSUM algorithm where
an unified convergence analysis is provided in [35]. After rewrit-
ing the problem (17) in terms of real-valued quantities, we verify
all the conditions of [35, Theorem 2 (a)].

Defining real-valued variables {x̃p}, {z̃p}, and D̃ as

x̃p :=

[

Re [xp ]
Im [xp ]

]

∈ R2N , ∀p = 1, . . . , P, (62)

z̃p :=

[

Re [zp ]
Im [zp ]

]

∈ R2L , ∀p = 1, . . . , P, (63)

D̃ :=

[

Re [D] , −Im [D]
Im [D] , Re [D]

]

∈ R2N×2L , (64)

problem (17) is equivalent to

minimize
{x̃p },D̃ ,{z̃p }

P∑

p=1

[
M∑

i=1

(√
yi −

√

x̃T
p Ãi x̃p

)2

+μ
∥
∥
∥x̃p − D̃z̃p

∥
∥
∥

2

2
+ ρ

L∑

i=1

√

[z̃]2i + [z̃]2i+L

]

subject to D̃ ∈ D̃, (65)

where D̃ is a closed convex set defined as

D̃ :=
{

D̃ ∈ R2N×2L | [D̃]1:N,1:L = [D̃]N +1:2N,L+1:2L ,

[D̃]N +1:2N,1:L = −[D̃]1:N,L+1:2L , ‖d̃l‖2 ≤ 1,∀l ∈ [1, L]
}

.

(66)

A. Updating the Sparse Codes {z̃p}
Problem (19) is equivalent to

minimize
z̃p ∈R2 L

μ
∥
∥
∥D̃(k) z̃p − x̃(k)

p

∥
∥
∥

2

2
+ ρ

L∑

i=1

√

[z̃]2i + [z̃]2i+L . (67)

The corresponding surrogate problem (24) is equivalent to

minimize
z̃p ∈R2 L

μE(k) ‖z̃p − ẽp‖22 + ρ

L∑

i=1

√

[z̃]2i + [z̃]2i+L , (68)

Ãi :=

[

Re [ai ] ReT [ai ] + Im [ai ] ImT [ai ] , Re [ai ] ImT [ai ]− Im [ai ] ReT [ai ]

Im [ai ] ReT [ai ]− Re [ai ] ImT [ai ] , Re [ai ] ReT [ai ] + Im [ai ] ImT [ai ]

]

∈ R2N×2N , ∀i = 1, . . . , M, (50)
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where ẽp ∈ R2L is a constant vector defined as

ẽp := z̃(k)
p − 1

E(k)

(

D̃(k)
)T (

D̃(k) z̃(k)
p − x̃(k)

p

)

. (69)

B. Updating the Estimated Signals {x̃p}
Problem (27) is equivalent to

minimize
x̃p ∈R2 N

M∑

i=1

(√
yi −

√

x̃T
p Ãi x̃p

)2

+ μ
∥
∥
∥x̃p − D̃(k) z̃(k+1)

p

∥
∥
∥

2

2
.

(70)
The corresponding surrogate problem (30) is equivalent to

minimize
x̃p ∈R2 N

(F + μ)
∥
∥
∥x̃p − f̃p

∥
∥
∥

2

2
, (71)

where f̃p ∈ R2N is a constant vector defined as

f̃p :=
1

F + μ

⎡

⎣F x̃(k)
p −

M∑

i=1

Ãi x̃(k)
p

⎛

⎝1−
√

yi
√

(x̃(k)
p )T Ãix̃

(k)
p

⎞

⎠

+μD̃(k) z̃(k+1)
p

]

. (72)

C. Updating the Dictionary D̃

Problem (33) is equivalent to

minimize
D̃∈R2 N ×2 L

∥
∥
∥X̃(k+1) − D̃Z̃(k+1)

∥
∥
∥

2

F

subject to D̃ ∈ D̃, (73)

where X̃(k+1) := [x̃(k+1)
1 , . . . , x̃(k+1)

P ] ∈ R2N×P and Z̃(k+1) :=
[z̃(k+1)

1 , . . . , z̃(k+1)
P ] ∈ R2L×P . Because of the special structure

of D̃, it is sufficient to find the first L columns {d̃l}Ll=1 . To
update d̃l , problem (37) is equivalent to

minimize
d̃ l ∈R2 N

‖z̃(k+1)
l,T ‖22 · ‖d̃l − g̃l‖22

subject to ‖d̃l‖2 ≤ 1, (74)

where g̃l ∈ R2N is a constant vector defined as

g̃l := d̃(k)
l +

1

‖z̃(k+1)
l,T ‖22

(

X̃(k+1) − D̃(k)Z̃(k+1)
)

(z̃(k+1)
l,T )T ,

(75)
and z̃(k+1)

l,T is a row vector denoting the l-th row of Z̃(k+1) .
Now the objective function in (68) (plus some constants) is a

valid majorization function of the objective function in (67) at
any point z̃(k)

p ; the objective function in (71) (plus some con-
stants) is a valid majorization function of the objective function
in (70) at any point x̃(k)

p ; and the objective function in (74)
(plus some constants) is exact the same as the objective func-
tion in (73) treating only one column d̃l as the variable. It is
easy to check that [35, Assumption 2] is satisfied. Moreover,
all the three objective functions in (68), (71), and (74) are con-
vex with regard to their corresponding variables. Problems (68),

(71), and (74) all have an unique solution. Hence, according to
[35, Theorem 2], every limit point of the sequence generated by
the SC-PRIME algorithm is a coordinate-wise stationary point
of problem (65). Therefore, every limit point of the sequence
generated by the SC-PRIME algorithm is a coordinate-wise sta-
tionary point of problem (17) if we project all the problems to
their corresponding equivalent problems in the field of complex-
valued numbers.
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